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Purpose. The aim of this study was to evaluate the utility of a parametric deconvolution method using a

sum of inverse Gaussian functions (IG) to characterize the absorption and concentrations vs. time

profile of drugs exhibiting complex absorption.

Methods. For a linear time-invariant system the response, Y(t), following an arbitrary input function I(t),

is the convolution of I(t) with the disposition function, H(t), of the system: Y tð Þ ¼
R t

0 I �ð ÞH t � �ð Þd� .
The method proposed uses a sum of n inverse Gaussian functions to characterize I(t). The approach was

compared with a standard nonparametric method using linear splines. Data were provided from

previously published studies on two drugs (hydromorphone and veralipride) showing complex

absorption and analyzed with NONMEM\.

Results. A satisfactory fit for hydromorphone and veralipride data following oral administration was

achieved by fitting a sum of two or three IG functions. The predictions of the input functions were very

similar to those using linear splines.

Conclusions. The use of a sum of IG as opposed to nonparametric functions, such as splines, offers a

simpler implementation, a more intuitive interpretation of the results, a built-in extrapolation, and an

easier implementation in a population context. Disadvantages are an apparent greater sensitivity to

initial value estimates (when used with NONMEM\).
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INTRODUCTION

Drug absorption from the gastrointestinal tract is gen-
erally considered to occur by passive diffusion throughout
the gastrointestinal membrane and a first- or zero-order
absorption rate is commonly used to characterize drug
absorption. However, for drugs whose absorption involves
an active process via transporters, multiple absorption sites,
or for drugs exhibiting an enterohepatic recycling, zero- or
first-order absorption processes are unable to depict cor-
rectly the appearance of the drug in the blood stream (1).
As a consequence of complex absorption rate profiles the
corresponding plasma concentrationYtime profiles are irreg-
ular and cannot be interpreted easily using conventional
models. Several methods have been proposed for the analysis
of complex absorption. Nonparametric deconvolution meth-
ods, which were developed in the 1960s and achieved

maturity in the early 1990s [see (2) for a comprehensive
review], have played an important role. These methods are
useful because they allow the characterization of arbitrarily
complex input rate functions without making assumptions
other than their belonging to a very flexible function class,
such as splines (3). A different class of methods treat the
absorption process as a discontinuous or a stepwise inter-
rupted process (4Y6). Some other methods have used more
mechanistic models that incorporate a variety of physiolog-
ical factors involved in the oral absorption process (7Y9).
Generally, flexible and simple parametric models that can be
used to describe the complex process of drug input are
lacking. This article presents an extension of the deconvolu-
tion method proposed by Weiss (10). The method uses a
weighted sum of inverse Gaussian functions to represent the
input function and can be used both for individual and
population data. This article includes the following: (1) a
description of the method, (2) a characterization of the input
function of an extended-release formulation of hydromor-
phone using a sum of inverse Gaussian functions in popula-
tion data (3) a description of the input and disposition
functions of veralipride in individual data where the input
function is represented by a sum of inverse Gaussian
functions or (4) by linear splines, and (5) a comparison of
the predictions and the estimates obtained for veralipride
using inverse Gaussian functions and linear splines as input
functions.
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MATERIALS AND METHODS

Theory

The output function at time t, Y(t), of a linear time-
invariant system is given by the convolution of the input
function, I(t), to the system with the disposition function,
H(t), of the system (2):

Y tð Þ ¼
Z t

0

I �ð ÞH t � �ð Þd� ð1Þ

where � is an integration variable. Many methods have been
presented to estimate I(t) (2). We will use a maximum-like-
lihood approach, where given data following a known input
(typically intravascular) and an unknown input (i.e., the ab-
sorption rate resulting from an extravascular administration)
we estimate simultaneously or sequentially I(t) and H(t). To
characterize I(t) we propose to use a weighted sum of n in-
verse Gaussian functions: The jth inverse Gaussian function,
IGj(t), is defined by the following Eq. (10):

IGjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MATj

2�CV2
j t3

s

e �
t �MATj

� �2

2CV2
j MATjt

" #

ð2Þ

where MATj is the mean input rate time and CVj
2 is the

squared coefficient of variation (CVj ¼ �j

MATj
, where sj

2 is the
variance associated with IGj(t)). An alternative parameter-
ization that is useful in applications is the time to peak, tmax,
of IGj(t), which estimates the time at which the input rate
attains its maximum value. Equation (2) was reparameterized
as follows (10):

tmaxj ¼MATj 1þ 9

4
CV4

j �
3

2
CV2

j

� �

ð3Þ

instead of MATj. The jth inverse Gaussian function now takes
the following form:

IGj tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmax j

�
A

2�CV2
j t3

s

e �
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where A is the part in brackets 1þ 9
4 CV4

j � 3
2 CV2

j of Eq. (3).
The input function can be represented using a sum of

inverse Gaussian functions as follows:

I tð Þ ¼ FD
Xn

j¼1

fjIGj tð Þ ð5Þ

where F denotes the bioavailability, D the administered
dose,

Pn

j¼1

fj ¼ 1 (note that
R1

0 IGj �ð Þd� ¼1; j ¼ 1; ::: ; n, therefore
Pm

j¼1

R1
0 fjIGj �ð Þd�¼

P
m
j¼1fj ¼ 1). This parameterization (ref-

erred to in the following as P1) offers the advantage that
the parameter F is estimated directly. An alternative param-
eterization (P2) is the following:

I tð Þ ¼ D
Xn

j¼1

fjIGj tð Þ ð6Þ

where now 0 �
Pn

j¼1

fj � 1, and the bioavailability is derived as
F ¼ Pn

j¼1

fj:

For methodologies comparison the input function was
also characterized using a linear spline, which is represented
using B-splines bases function (3):

I tð Þ ¼ D
Xm

j¼1

!jBj tð Þ ð7Þ

where m is the number of basis functions Bj(t) and aj are
parameters to be estimated. The breakpoints of the spline
were put at time zero (x1) and at the quantiles of the
observations times for the extravascular administration (xj j =
2, . . . , m). For easy reference we report the expression for the
B-spline basis functions [see (11) for details]. The B-splines
functions have the shape of triangles:

For j ¼ 1
B1 tð Þ ¼

xjþ1 � t

xjþ1 � xj

� � xj � t � xjþ1

0 otherwise

8
><

>:
ð8Þ

For j ¼ 2; : : : ;m� 1

Bj tð Þ ¼
t � xj�1

xj � xj�1

xj�1 � t � xj

Bj tð Þ ¼
xjþ1 � t

xjþ1 � xj

xj � t � xjþ1

0 otherwise

8
>>>><

>>>>:

ð9Þ

For j ¼ m
Bm tð Þ ¼ t � xm�1

xm � xm�1

xm�1 � t � xm

0 otherwise

8
<

:
ð10Þ

The bioavailability F is derived as the time integral of
the input:

Z xm

0

I �ð Þd� ¼ x1!1=2þ
Xm�1

j¼1

xjþ1 � xj�1

� � !j

2
þ xm!m=2 ð11Þ

Note that the representation of I(t) just described is zero
outside the interval [x1, xm]: a spline representation does not
provide a built-in extrapolation.

Data

The analysis was based on data gathered from two
studies in healthy volunteers previously described in (12)
and (5).

Hydromorphone

Briefly stated, the first study was a randomized crossover
design study, in which 12 volunteers received hydromor-
phone 8 mg intravenous; 8 mg in an immediate-release (IR)
oral form (Dilaudid\, Abbott Laboratories, Abbott Park,
IL); and 8 mg, 16 mg, and 32 mg of an extended release
formulation (OROS\, Abbott Laboratories). The OROS\

formulation is a sustained release system that uses a
semipermeable membrane around a drug tablet core which
is capable of providing sustained drug release once swallowed
orally. Arterial blood samples after administration of the
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infusion were drawn immediately before the dose and at 1, 3,
5, 7, 10, 11, 12, 13, 15, 17, 20, 25, 40, 55, 70, 100, 130, 190, 250,
370, 490, 730, 970, and 1450 min after drug administration.
Venous blood samples after administration of the OROS\

formulations were drawn before the dose and at 1, 2, 3, 6, 9,
12, 15, 18, 21, 24, 30, 36, and 48 h after drug intake. All the
data were considered in a population data analysis.

Veralipride

The second study involved veralipride. In this study, 12
healthy volunteers received three different pharmaceutical
forms of veraliprideVa 30-min constant intravenous infusion,
an oral solution, and a capsule- at 1-week intervals in a
randomized crossover design. In each case, a 100-mg dose
was administered in the morning after an overnight fast.
Plasma sampling was done immediately before the dose and
at 0.17, 0.33, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, and 24
h after drug administration. The absorption profile following
the administration of the oral solution of veralipride is
characterized by a double-peak phenomenon. To illustrate
the application of our method, two subjects were chosen who
exhibited a marked double absorption peak, and one subject
who showed a smaller second peak.

Model-Based Analysis

Hydromorphone

OROS\ hydromorphone deconvolution was performed
sequentially. The disposition parameters were fixed to the
individual empirical Bayesian disposition estimates provided
by our previous study, in which a three-compartment mod-

el was used to fit the intravenous data (12). The absorp-
tion rate was then modeled using a sum of inverse Gaussian
functions. The model is described by the following differen-
tial equations:

dA1

dt
¼ k21A2 þ k31A3 � k10 þ k12 þ k13ð ÞA1 þ I tð Þ ð12Þ

dA2

dt
¼ k12A1 � k21A2 ð13Þ

dA3

dt
¼ k13A1 � k31A3 ð14Þ

C tð Þ ¼ A2 tð Þ
V

ð15Þ

where A1, A2, and A3 are the amounts in the central and the
two peripheral compartments, respectively; kxy is the transfer
rate constants from compartment x to compartment y (y = 0
when it denotes the outside of the compartmental model);
I(t) is the sum of two or three inverse Gaussian functions
as described in Eq. (5), parameterized in terms of MAT
[Eq. (2)] or tmax [Eq. (4)].

Veralipride

The modeling of veralipride deconvolution was per-
formed with a simultaneous approach, allowing the disposi-
tion and the input functions to be characterized during the
same analysis. A two-compartment model was used to model
the data, as previously reported (5). Each of the three
subjects was modeled separately, using either inverse Gauss-

Table I. Estimates of the Pharmacokinetic Parameters for

Hydromorphone

Population mean Intersubject variabilitya

Estimates SE (%)b Estimates SE (%)b

tmax1 (min) 251 6

tmax2 (min) 784 3 7% 60

tmax3 (min) 1790 7

CV1 0.464 10

CV2 0.303 13 0% V
CV3 0.378 15

F 0.27 7 25% 41

f1 0.11 9

f2 0.39 9

s (CV%)c 36% 12

tmax1, tmax2, tmax3, time at maximum input rate; CV1, CV2, CV3,

normalized variance of the distribution associated with each inverse

Gaussian function; F, bioavailability; and f1, f2, the fractional input

associated with each function.
aEstimates of variability expressed as a coefficient of variation

(CV%).
bStandard error of the estimates (SE), defined as SE/estimate

expressed as a percentage.
cResidual intrasubject variability expressed as coefficient of variation

(CV%).

Fig. 1. Predicted vs. observed hydromorphone concentrations in 12

subjects after administration of both 8 mg intravenously and 8, 16,

and 32 mg orally in an OROS\ formulation.
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ian functions or linear splines to represent the input rate
function. The model is expressed using differential equations
as follows:

dA1

dt
¼ k21A2 � k10 þ k12ð ÞA1 þ I tð Þ ð16Þ

dA2

dt
¼ k12A1 � k21A2 ð17Þ

where I(t) is the sum of two or three inverse Gaussian
functions parameterized in terms of tmax [Eqs. (4) and (5) or
by the linear splines [Eqs. (10)Y(13)].

Fig. 2. (a) Plasma concentrations (open circles) and individual predictions (solid line) vs. time for OROS\ hydromorphone

after administration of the 8-mg (upper panel), the 16-mg (middle panel), and the 32-mg dose regimens (lower panel). (b)

Individual input rate function vs. time after administration of the 8-mg (upper panel), the 16-mg (middle panel), and the 32-

mg dose regimens (lower panel).
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Statistical Models

Different models for intersubject variability can be used
with a sum of inverse Gaussian functions. Only two such
models are mentioned here. The first is the Bsaturated^
model, which assigns a random-effect to each parameter
of the model. Thus, for the ith individual, we have the
following:

Using parametrization P1 or P2; for j ¼ 1; : : : ; n
MATij ¼MATje

�i; j ; or tmaxij
¼ tmaxj

e�i; j

CVij ¼ CVie
�i; nþj

ð18Þ

Using parametrization P1

Fi ¼ Fe�i;2n

for j ¼ 1; : : : ; n� 1

fij ¼ fie
�i;2nþ1þj ; and fin ¼ 1�

Xn�1

j¼1

fij

Using parametrization P2 for j ¼ 1; : : : ; n
fij ¼ fie

�i;2nþj

The total number of random effects in this saturated model is
3 � n, where n is the number of inverse Gaussian functions.
At the individual levels, we impose the same constraint of F
and fi described earlier; for example, 0 e Fi e 1. This can be
done in NONMEM using an EXIT statement. A useful sub-
saturated model assumes that mean absorption times, coef-
ficient of variation (CV), and bioavailability are each scaled

by the same random effect. The model has a total of three
random effects parameters, as follows:

Using parametrization P1 or P2; for j ¼ 1; : : : ; n
MATij ¼MATje

�i;1 ; or tmaxij
¼ tmaxe�i;1

CVij ¼ CVie
�i;2

ð19Þ

Using parametrization P1 Fi ¼ Fe�i;3

Using parametrization P2; for j ¼ 1; : : : ; n fij ¼ fje
�i;3

As is usually done in population modeling, stepwise addition
or deletion can also be used to add (starting from the sub-
saturated model) or subtract (starting from the saturated
model) random effects sequentially, keeping or removing the
ones considered statistically significant.

We used a proportional error model to describe intra-
individual (residual) variability for both hydromorphone and
veralipride plasma concentrations. For the generic response
Y and the corresponding prediction Ŷ , the kth measurement
for the ith individual takes the following form:

Yki ¼ Ŷ 1þ "kið Þ ð20Þ

where (ki is independent normally distributed with mean zero
and a variance s 2.

Implementation Details

Using NONMEM\ (13), the parameters fj in Eq. (5)
were estimated using the following:

f1 ¼ �1; fj ¼ 1�
Xj�1

i¼1

fi

 !

�j; fn ¼ 1�
Xn�1

i¼1

fi ð21Þ

Table II. Estimates of the Pharmacokinetic Parameters for Veralipride in Three Subjects

Subject 1 Subject 2 Subject 3

Inverse Gaussian Splines Inverse Gaussian Splines Inverse Gaussian Splines

Estimates SEa Estimates SEa Estimates SEa Estimates SEa Estimates SEa Estimates SEa

V (L) 22.1 43% 23.0 41% 17.5 7% 17.5 8% 27.3 9% 27.4 9%

k10 (hj1) 1.79 39% 1.72 37% 1.60 7% 1.59 8% 1.17 9% 1.17 9%

k12 (hj1) 5.15 44% 4.79 44% 5.8 11% 5.9 12% 3.49 10% 3.46 11%

k21 (hj1) 1.45 17% 1.42 18% 1.0 9% 1.0 9% 0.78 8% 0.78 8%

F 0.80 7% 0.81 23%c 0.72 5% 0.69 13%c 0.91 5% 0.59 10%c

tmax1 (h) 0.13 22% 0.11 13% 0.16 9%

CV1 1.09 11% 1.0 24% 0.86 13%

tmax2 (h) 2.47 17% 2.16 17% 1.56 3%

CV2 0.24 34% 0.77 22% 0.22 19%

tmax3 (h) V V 0.90 9%

CV3 V V 40 7%

f1 0.84 5% 0.25 12% 0.085 21%

f2 0.16 V 0.75 V j0.062 20%

f3 V V V V 0.977 V
sb 28% 45% 29% 10% 17% 9% 9% 27% 9%

V, volume of distribution of the central compartment; kxy, transfer rate constant from compartment x to y; F, bioavailability; for each inverse

Gaussian function, respectively; tmax1, tmax2, tmax3, time to maximal concentrations; and f1, f2, f3, fractional input rate.
a Standard error of the estimates (SE), defined as SE/estimate expressed as a percentage.
b Estimates of residual variability expressed as a coefficient of variation (CV%)
c Derived from

Pm

j¼1

�jþ1��j�1ð Þ
2 SE !j

� �
, where SE(aj) is the standard error of the estimate of the parameter a.
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where 0 e qj e 1, j = 1, . . . , n. We also imposed the constraint
MAT1 e MAT2 e . . . e MATn using the following:

MAT1 ¼ �1;MATj ¼MATj þ �j; �j � 0 ð22Þ

so that the inverse Gaussian functions are naturally ordered
by MATj. For the population case, using the saturated model
for example, the intersubject variability model Eq. (18)
similarly imposes: tmaxij � tmaxi;j�1, using tmaxij ¼ tmaxi;j�1 þ
�je

�
i;j for j = 2, . . . , n.

Fig. 3. (a) Plasma concentrations (open circles) and predictions using the sum of the inverse Gaussian functions (solid line)

and the linear splines (dashed lines) after administration of 100 mg of veralipride in Subject 1 (upper panel), Subject 2

(middle panel), and Subject 3 (lower panel). (b) Individual input rate function vs. time for the three subjects using the sum of

the inverse functions (solid line) or the linear splines (dashed lines) as input functions.
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Parameter Estimation and Model Selection

Hydromorphone and veralipride concentration-time
curves were analyzed by nonlinear regression using NONMEM
VI(13) with the first-order (FO) method and three significant
digits to fit the models described above to the data. The
compiler is the SunPro FORTRAN 77 running on a Sun
Workstation Ultra-5. NONMEM performs linearized maxi-
mum likelihood estimation by use of an objective function
(OBJ). To determine the statistical significance between two
models, different statistical selection criteria can be used
(14Y16) that require a minimal decrease of 2 to 10 points in
the objective function (minus twice the logarithm of the
linearized maximum likelihood of the model) to accept a
model with one additional parameter. For both methods
described earlier we increased n and m until the statistical
model selection criterion fails to decrease. We also compared
standard regression diagnostic plots. The figures were
generated with S-PLUS (17).

RESULTS

Hydromorphone

The first analysis presents the results of a population
study on hydromorphone, administered intravenously and as
an OROS\ formulation. The disposition parameters were
fixed to the individual empirical Bayesian disposition esti-
mates, which were shown to fit the intravenous data ad-
equately with the use of a three-compartment model (12). One
and a sum of two and three inverse Gaussian functions were
tested as input functions. One input function did not describe
the data appropriately, and showed a marked trend in the
regression plots. The addition of a second inverse Gaussian
function improved the fits (the decrease in the objective
function was DOBJ = j150). A sum of three inverse Gaussian
functions provided an additional decrease in the objective
function (DOBJ = j58) and was able to capture the complex
absorption profile with more flexibility. As expected, using
either parameterisation with MAT [Eq. (2)] or tmax [Eq. (4)]
resulted in a similar overall goodness of fit in the plots (not
shown), but a significant drop in the OBJ (DOBJ = j8) was
noticed while estimating tmax rather than MAT.

Using the saturated model for inter-individual variability
[Eq. (18)], only variabilities on tmax1, tmax2, tmax3, F, and f2

could be estimated, whereas the variances for the other
parameters were not statistically significantly different from
0. Using the sub-saturated model revealed inter-individual
variabilities on F and on tmax, but the variance on CV1 was
zero. In relation to these results, the model in which a
variance was tested on each parameter sequentially was not
relevant. Table I presents the final population estimates and
coefficients of variation for hydromorphone using the
parameterization P1 and the sub-saturated model for inter-
subject variability. The plot of the observations vs. predic-
tions is shown in Fig. 1. Figure 2a depicts the observed
concentrations (open circles) vs. time with the individual
predictions (solid line) obtained at each observed time
points. Figure 2b presents the corresponding input functions,
after administration of 8 mg (upper panel), 16 mg (middle
panel), and 32 mg (lower panel) of hydromorphone.

Veralipride

The modeling of veralipride deconvolution was per-
formed with a simultaneous approach, which allowed the dis-
position and the input functions to be characterized during the
same analysis. A two-compartment model was used to model
the data as previously reported (5). The use of a single inverse
Gaussian function did not capture the two-peak phenomenon
adequately. A sum of two inverse Gaussian functions statis-
tically improved the fit of all three subjects compared to the
model involving a single function (DOBJ = j4, j83, and
j31, respectively). Using a sum of three inverse Gaussian
functions further decreased the objective function for Subject
3 (DOBJ = j18), but did not improve the description of data
for Subject 1 or 2 (DOBJ = 0 for both subjects).

For comparison, linear splines were used to model the
input function of the same three subjects. The use of six
breakpoints at times 0, 0.46, 1.3, 2.7, 6.4, and 12.1 hours was
first tested. The absorption data from all three subjects were
characterized adequately by linear splines and six break-
points. The use of seven breakpoints at times 0, 0, 0.386,
0.916, 2, 3.33, 7.33, and 12.1 h slightly improved the fit of
Subject 2 (DOBJ = j4), but did not further modify the input
profile of Subject 1 or 3 (DOBJ = j0.8 and 0, respectively).
The parameter estimates for the absorption and disposition
of veralipride using both a sum of inverse Gaussian functions
and the linear splines as input functions are presented in
Table II. Figure 3a shows the concentrations (open circles)
for Subjects 1, 2, and 3 after administration of 100 mg of
veralipride, with the prediction obtained using the inverse
Gaussian function (solid line) and the linear splines (dashed
lines). Figure 3b presents the corresponding predicted input
functions using the sum of the inverse Gaussian functions
(solid line) or linear splines (dashed lines).

DISCUSSION

Oral administration of drug is a very complex process
that manifests itself trough potential interaction with a host
of physicochemical and physiological variables. Factors that
can potentially contribute to irregularities in drug absorption
include presystemic metabolism/efflux, gastric pH/emptying
rate, gastrointestinal motility, luminal contents, and formula-
tion effects. Also, new drug formulations are being developed
to make patient dosing easier and to improve drug effect,
tolerance, and patient compliance. Using extended-release
systems can produce complex absorption patterns that cannot
be described effectively by the traditional sum-of-exponen-
tials models. The typical first-order or zero-order absorption
models are often not satisfactory mathematical models when
drug release, absorption, and elimination occur simultaneous-
ly and in a complex fashion.

In this article, we suggest the use of a sum of inverse
Gaussian functions to represent the input function of drugs
exhibiting atypical drug absorption. We elaborate the meth-
od first presented by Weiss using a single inverse Gaussian
function (10), and propose a novel approach, which uses a
sum of inverse Gaussian functions and allows the represen-
tation of more complex absorption functions as shown by the
examples reported in the preceding. To deal with the
correspondingly more complex estimation problem (each
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inverse Gaussian function adds three parameters) we intro-
duce a parameterization in tmax. This allows a natural
ordering of the functions, avoids flip-flops between the
inverse Gaussian, and generally obtains slightly lower objec-
tive function values using NONMEM\, which is an indica-
tion of a more efficient minimization since, of course, the
final values of OBJ should be identical and independent of
parameterization.

Our results show that a sum of three inverse Gaussian
functions is necessary to describe the absorption profile of
OROS\ hydromorphone, which shows a very complex ab-
sorption pattern. We obtained population estimates of tmax1 =
251, tmax2 = 784 and tmax3 = 1790 for the successive peaks of
the input observed after administration of OROS\ hydro-
morphone, as shown in Fig. 2. The estimated bioavailability
of 0.27 is in close agreement with the bioavailability cal-
culated from the area under the input rate vs. time curve
using linear splines in our previous analysis (F = 0.24, SD =
0.06) (12).

The concentrationYtime profile of veralipride, whose
absorption profile is characterized by a marked double-peak
phenomenon, was characterized as well by a sum of two or
three inverse Gaussian functions, as shown Fig. 3a. The
comparison to a previous analysis of veralipride which used a
two-site absorption model (5) showed that the estimated
tmax2 ¼ 2:47 h for Subject 2 is in good agreement with the
reported value of 2.53 h. As opposed to their model that
could not find an acceptable solution for Subject 1, the sum
of inverse Gaussian functions was able to detect a two-peak
phenomenon. The second peak was, however, small in this
individual and slightly underpredicted. For Subject 3, one of
the weights of the inverse Gaussian functions is negative
(although the input function is non-negative everywhere);
thus the values of tmax reported in Table II do not correspond
to times of successive peaks visible in the input vs. time plot.
For comparative purposes, we estimated graphically peaks at
0.7, and 2.5 h. These values are very similar to the values 0.99
and 2.53 h reported in (5). The bioavailability F = 0.81, 0.69
and 0.91 for Subjects 1, 2, and 3, respectively, are close to the
mean reported value of F = 0.86 (SD = 0.31). [The data
analyst should be aware that the weight attached to each
inverse Gaussian function is not constrained to be positive,
but that at any time the I tð Þ ¼ D

Pn
j¼1 fjIGj tð Þ term should be

non-negative, to be consistent with physiology. Thus a fit
resulting in a negative input function should be rejected, the
exception is for special situations in which the input function
can become negative, e.g., after charcoal administration
following an oral dose (18)].

The comparison of the sum of inverse Gaussian method
with a nonparametric approach shows (Fig. 3a, b) that the
concentrationsYtime profile and the input-time profile using
linear splines (dashed lines) are very similar to those
represented by inverse Gaussian functions (solid lines). The
only notable difference is the 35% lower bioavailability
estimated in Subject 3 using the linear splines. The lack of
extrapolation using a nonparametric approach, as opposed to
the presence of a built-in extrapolation using inverse Gaussian
functions, might explain the discrepancy in F observed for this
individual, whose terminal slope appears particularly flat.

Compared to other nonparametric functions, such as
splines, this approach offers the advantage that it is para-

metric and that the results can be directly related to the ab-
sorption process, that is, F, MATj, or tmaxj the mean
absorption times or times of maximal input rate; the param-
eter CV1 can be related to the dispersion of the shape of the
absorption profile. This approach also offers a simpler and
more easily interpretable implementation in a population
context. One of the main disadvantages when using a non-
parametric method in a population context is indeed that the
issue of associating intersubject variability to the structural
model using random effects is not trivial (11). In the case of a
parametric model random effects are naturally associated
with the model parameters. For a nonparametric model,
however, such as a spline, the parameters offer little, if any,
interpretation, thus complicating the interpretation of ran-
dom effects when associated with the parameters of the
spline. The number of parameters in a spline is generally very
high, which makes associating random effects to each param-
eter (thus generating a Bsaturated^ random effect model)
impractical. Moreover, it is not straightforward to use Bsub-
saturated^ models, in which random effects are not asso-
ciated with each parameter of the spline. Possible ways to
correct these problems, and fully describe inter-individual
variability associated with a nonparametric model, are de-
scribed in (11). Compared to the splines, we observed that
this model had the disadvantages of an apparent greater
sensitivity to initial value estimates, leading to termination of
the minimization at multiple apparent local minima. This is
very common when using nonlinear models in NONMEM,
and we recommend constraints and choosing multiple rea-
sonable initial estimate, to identify the (apparent) minimum
of the objective function.

Although this method does not propose an underlying
mechanism of absorption, we have shown that it could be
used to characterize irregularities in absorption arising from
different sources. In addition, a reviewer suggests that it
could also be used for gastric emptying-limited absorption,
enterohepatic cycling, or window-type absorption; see (19)
for a review of these phenomena. In the case of a window-
type absorption process, when an Babsorption window^ may
exist within the gastrointestinal tract, multiple lag times could
simply be introduced in the model to characterize delays in
reaching the most effective absorption site. That is, one can
use

IG�j tð Þ ¼
0; t � tlag; j

IGj t � tlag; j

� �
; otherwise

(

where tlag, j is the lag time for the j th inverse Gaussian
function. A single lag time, similar to what is commonly
used with a first-order absorption function, is simply
achieved by constraining tlag, 1 = tlag, 2 = . . . tlag, n. The
constraint tlag, 1 e tlag, 2 e . . . tlag, n achieves differential lag-
times between the inverse Gaussian functions, thus allowing
differential starting points for multiple absorption process
(we remark that in the case of absorption windows
constraints such as MAT1 e MAT2 e . . . . e MATn might
not be appropriate, since absorption characteristics corre-
sponding to multiple well separated absorption sites might
not need to be ordered.)
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